

TESTING A MACHINE LEARNING SOLUTION May 24, 2023

AGENDA

- Quick Overview of the AI/ML Landscape
- Testing Approaches to the Machine Learning Lifecycle

AI/ML Landscape

A Brief Clarification on Terminology

Artificial Intelligence (AI)

AI & ML: From Slow Growth to Soaring Heights

The future

- Everything we do will be augmented with AI/ML
- Modeling becomes easier, faster, and more accurate everyday what data you have is the differentiator
- The rate at which things are researched/developed will increase very rapidly

Adoption & Market Growth

ARTIFICIAL INTELLIGENCE MARKET SIZE, 2021 TO 2030 (USD BILLION)

Data Science Testing Challenges

Testing vs Evaluation

Testing

- Verifying that software product or application does what it is supposed to do
- Examples:
 - Unit tests
 - Regression tests
 - Integration tests

Evaluation

- Metrics and visualizations used to summarize to reliability and predictive performance of a model on validation or test data
- Examples:
 - Accuracy
 - F1 score
 - RMSE

Simple Example of Classic Testing Approach

- Most testing approaches require the 'answers' to be known and the solutions to be deterministic
- Most machine learning models are stochastic, involve some element of randomness, and the answers are often unknown or entirely undefined
- Advanced models are incredibly complex and difficult to understand, much less test

Deterministic vs Stochastic

Deterministic

- Produce the exact same results for a particular set of inputs
- Examples of deterministic concepts:
 - Accounting
 - Geometry
 - Converting units of measure
- Some simpler models are deterministic:
 - Linear Regression
 - Logistic Regression
 - Principal Component Analysis (PCA)

Stochastic

- Product differing results for a particular set of inputs
- Examples of stochastic concepts:
 - Monte Carlo simulation
 - Weather forecasts
 - Playing cards
- Most machine learning today is stochastic:
 - Any model involving a random seed hyperparameter
 - Any model with an element of probability or randomness

Why bother with stochastic models?

- 'Randomness' is a feature, not a bug
- Elements of randomness often produce better results
- Capable of deriving logic from complex data

Machine Learning Development Cycle

Model Development

Model Development

<u>Common Concerns</u>

- Minor input data changes can sometimes have seemingly outsized impacts on predictions even with the same data set
 - Outlier removal
 - Adding/removing samples

Best Practices

- Stick to foundational data quality best practices
- Track the datasets that are being used to build models
- More data typically means less impact

Model Development

<u>Common Concerns</u>

Validation of derived features often doesn't happen

Best Practices

Perform data unit tests before putting in production

Model Development

Common Concerns

- Different iterations of the model produce different results
- Train-test splits are randomized

Best Practices

- Use a model registry tool to track models
- Fix the random number generator seed only if absolutely necessary
- Perform appropriate number of k-folds validation

Model Development

<u>Common Concerns</u>

'Black box' logic

<u>Best Practices</u>

- Validate the output ranges
- Validate changes in inputs result in predictions that match your intuition
- Validate small perturbations affect the model how you would expect

Common Concerns

Differences in environment can cause different predictive values and subsequently model performance

Best Practices

Keep the environment constant through development and production phase using containers or VMs

Common Concerns

'Correct' answer is undefined

Best Practices

- Validate your input data using traditional approaches
- Validate you are predicting reasonable values
- Validate predictions for high consequence examples

Common Concerns

Model performance degrades over time, unlike typical software

Best Practices

- Monitor the performance of your model
- Monitor the distribution of your inputs
- Set thresholds for both to trigger re-training

<u>Common Concerns</u>

Same concerns as training in development process

Best Practices

- Go back to development process if model performance is sizably worse than previous iterations
- Track models in a model registry tool

Retraining Cycle

Other machine learning concepts related to testing

BIAS

The idea that the model produces results that are systemically prejudiced due to erroneous assumptions in the build process

TOXICITY

The idea that the model can produce results that are unintentionally harmful when used in an uncontrolled environment

In Summary

- Stochastic nature is a feature not a defect
- Use the traditional testing methods when appropriate
- Work in partnership with data science counterparts on other aspects

Steven Devoe steven.devoe@spr.com https://www.linkedin.com/in/stevendevoe/

Questions?