
www.spinstitute.org 1

© IISP, 1996-2008

Defect Prevention: A Tester’s Role in

Process Improvement and reducing

the Cost of Poor Quality

Mike Ennis, Senior Test Manager

Accenture

www.spinstitute.org 2

© IISP, 1996-2008

Defect Prevention versus Defect Detection

• Defect Prevention

Techniques that are designed to find defects “before”
the artifact has been developed

• Defect Detection

Techniques that are designed to find defects after the
artifact “under test” has been developed

http://www.spinstitute.org/

www.spinstitute.org 3

© IISP, 1996-2008

Why is Defect Prevention so important?

The cost factor for discovering and fixing defects in later phases

versus early phases can be up to 100:1

http://www.spinstitute.org/

www.spinstitute.org 4

© IISP, 1996-2008

Stage Containment

in a typical IT organization, most defects are injected into a

system in its early stages

http://www.spinstitute.org/

www.spinstitute.org 5

© IISP, 1996-2008

Stage Containment

in a typical IT organization, most defects are injected into a

system in its early stages and fixed in its later stages

http://www.spinstitute.org/

Quality Assurance

• Activities that modify the development process to prevent

the introduction of flaws

– Staff function

– Implements management‟s quality policies

– Responsible for continuous improvement of the software

development process

• Proactive approach focused on defect prevention

• Examples:

– Defining change control procedures

– Facilitating post-project reviews

– Analyzing metrics to identify opportunities for process improvement

© IIST, 1996-2010 www.iist.org 6

http://www.spinstitute.org/

Quality Control

• Activities within the development process to detect the
introduction of flaws
– Test planning and execution

– Quality control measures a product against the existence of an
attribute

– Determines whether the product conforms to a standard or
procedure (also known as compliance checking).

• Proactive approach focused on defect detection

• Examples:
– Writing and executing test cases and scripts

– Participating in verification and validation activities

– Reporting defects to identify opportunities for process improvement

© IIST, 1996-2010 www.iist.org 7

http://www.spinstitute.org/

www.spinstitute.org 8

© IISP, 1996-2008

Defect Prevention Techniques

 Risk Based Testing

 Inspections

 Reviews

Walkthroughs

Examples of Defect Prevention:

http://www.spinstitute.org/

www.spinstitute.org 9

© IISP, 1996-2008

Risk Based Testing

Business Value

Risk-based testing is a structured method for reducing testing effort

based on component risk. It is a proven practice in testing which relies on

strong business and IT participation to deliver real business value. As

applied to the development lifecycle, risk management provides a means

to focus testing efforts where they will make the greatest difference.

Accenture's unique utilization of Risk-Based Testing together with our

proprietary assets in this space will make it easier to engage the business

units early in the lifecycle, especially for applications where requirements

have not been documented thoroughly.

Objectives of Risk-Based Testing

• Minimize threats to the solution delivery objectives.

• Provide a systematic approach for:

• Evaluating and improving the quality of requirements;

• Improve both test effectiveness and efficiency;

• Monitoring and reporting progress in reducing risk;

• Adjusting risk reduction actions (e.g. test scope) based upon the effectiveness of prior actions or

additional knowledge.

• Gain consensus on high risk requirements

Analyze Build Design Test

0

Impl.

Test Activities

R
I
S
K

R
A
T
I
O

1

Risk Ratio Analysis
Risk Ratio

Defect Prevention Techniques

http://www.spinstitute.org/

Implementing Risk-Based Testing
The Process within the Solution Life Cycle

Risk Assessment Key Players / Approvers

Test Lead, Release Manager, Reporting Team, Application Lead, Architects, SME, Business Process Analyst, Design Lead, Interface Team

Risk Assessment

The following illustrates the iterative “risk re-assessment” that takes place at each point where

a is shown below. Participation from key business, IT, and QA reps is important at each

reassessment point.

Maintain Requirement
Attributes related to

Risk-Based Testing

Assess Risk and
Determine Test Scope

Execute Tests
According to Identified

Risks

Update Risk
Assessment Plan

Execute Respective
Risk Mitigation Plan

Analyze

Risk Assessment
Checkpoints

Integration of Test Metrics, Test Phase Entry/Exit Criteria
and Service Level Agreements (SLA)

Design
Build

Component Test
Assembly

Test
Product Test

Performance
Test

User
Acceptance

Operational
Readiness

Deploy

Risk Assessment
Baseline

Risk Assessment
Final

© IIST, 1996-2010 www.iist.org 10

http://www.spinstitute.org/

© IIST, 1996-2010 www.iist.org 11

This is an assessment of
the likelihood of an error

being delivered into

production at a point in
time.

Quantifies the “true”
impact of each risk, also

referred to as the „level of

damage‟ potentially
caused by the change.

This is an estimate of the

overall scale of impact if a
defect related to the

change were found in

production.

Indicates the relative
control which can be

exerted on the probability

of the risk occurring in
production.

Indicates the Confidence
level of the Risk

evaluated. In a typical

situation, as we
understand and get more

clarity on requirements

confidence level
increases.

5 = Critical …

1 = Marginal

5 = Very Likely …

1 = Unlikely

5 = Total Control …

1 = No Control

Risk Assessment Analysis
Risk Factor Distribution

It is important to understand the primary factors driving the assessed risk level.

Impact Probability

Level of Control Confidence Level

5 = Very High …

1 = Very Low

© IIST, 1996-2010 www.iist.org 11

http://www.spinstitute.org/

www.spinstitute.org 12

© IISP, 1996-2008

Defect Prevention Techniques

Inspections

 Create an Inspection Plan

 Inspections should raise the
quality of an application

 Inspections should find faults
with requirements, test plan
documents, design
documents.

 Similar to a Peer Review

http://www.spinstitute.org/

www.spinstitute.org 13

© IISP, 1996-2008

Defect Prevention Techniques

Reviews

 Establish a Peer Review
Process

 Identifies issues/risks in Test
Planning

 Types of Reviews:

-Formal

-Informal

-Facilitated

-Unfacilitated

http://www.spinstitute.org/

www.spinstitute.org 14

© IISP, 1996-2008

Defect Prevention

Walkthroughs

 No Formal Plan

 Peer/Lead Checks

 Typically done in a group
setting while walking through
a test script or document

 Feedback given by attendees
during walkthrough

http://www.spinstitute.org/

www.spinstitute.org 15

© IISP, 1996-2008

Defect Prevention – Type of Defects Found

Work product elements that are:
Missing

Inconsistent or mismatched (such as interface
specifications)

Non-conforming (fail to follow processes)

Incorrect (deviate from requirements and rules or
standards)

Unclear

Ambiguous

Unnecessary

Un-testable

http://www.spinstitute.org/

www.spinstitute.org 16

© IISP, 1996-2008

Defect Prevention – What Can Be Reviewed?

• Specifications
– Requirements

– Design

• Memos

• Proposals

• Plans

• Policies

• Procedures

• Brochures

• Statements of work

• Contracts

http://www.spinstitute.org/

www.spinstitute.org 17

© IISP, 1996-2008

Defect Prevention – Value of Reviews

• Provide early quality assessments (verification) of the work products

– Detecting dependencies and inconsistencies in software models, such

as links

– Improved maintainability of code and design

• Colleagues will see what you can‟t

• Catch bugs earlier

– It‟s cheaper to prevent a defect than to repair one later in the life cycle

• Identification of defects not easily found by dynamic testing

http://www.spinstitute.org/

www.spinstitute.org 18

© IISP, 1996-2008

Defect Prevention – Value of Reviews (cont.)

• Early warning about suspicious aspects of the code or

design (high complexity measures)

• Opportunities for process improvements

– Prevention of defects, if lessons are learned in development

• Reduce overall project time scales

• Potential opportunities for communication and learning

http://www.spinstitute.org/

www.spinstitute.org 19

© IISP, 1996-2008

Defect Detection Techniques

 Functional

 Structural

Examples of Defect Detection:

http://www.spinstitute.org/

www.spinstitute.org 20

© IISP, 1996-2008

Defect Detection Techniques - Functional

Functional:
• Functional testing is based on requirements and functionality.

• Functional testing covers how well the system executes the
functions and features.

• Functional testing is not based on any knowledge of internal
software design or code.

• Functional testing covers the front-end functions, as well as
the back-end operations such as security and how upgrades
affect the system.

• Generally functional testing is often done toward the end of the
development cycle.

• It is recommended to be started earlier such as individual
components and processes.

• Black Box, Acceptance, Closed box and Integration testing are
functional testing techniques.

http://www.spinstitute.org/

www.spinstitute.org 21

© IISP, 1996-2008

Defect Detection Techniques – Structural

• Structural testing is typically based on the architecture of

the system

– Aspects such as a calling hierarchy, data flow diagram, design

specification, etc.

• Structural (white-box) testing may be performed at all

test levels

– System, system integration, or acceptance testing levels (e.g., to

business models or menu structures)

• Structural techniques are best used after specification-

based techniques

http://www.spinstitute.org/

www.spinstitute.org 22

© IISP, 1996-2008

Defect Detection Techniques – Structural

• Structural testing is primarily about coverage

– Coverage is the degree to which a structure has been exercised

by the set of tests

• Typically it is expressed as a percentage of the items being covered

• More on coverage later

• Tools can be used at all test levels to measure the code

coverage of elements, such as statements or decisions

– Tools are especially useful at component and component

integration testing

http://www.spinstitute.org/

www.spinstitute.org 23

© IISP, 1996-2008

Black Box Versus White Box

Black box testing focuses on functional testing, not based on any
knowledge of internal software design or code, where as White box
focuses on knowledge of the internal logic of an application's code.

Black box testing is based on requirements and functionality, where as
White box testing is based on coverage of code statements, branches,
paths and conditions.

Equivalence Partitioning, Boundary Analysis and Error Guessing are

successful techniques for managing the amount of input data for

Black box testing.

Statement Coverage, Decision Coverage, Condition Coverage,

Decision/Condition Coverage and Multiple Condition Coverage are

five important techniques for White box testing.

http://www.spinstitute.org/

www.spinstitute.org 24

© IISP, 1996-2008

Static Versus Dynamic

• Static testing is performed using the software documentation.

The code is not executing during static testing where as

Dynamic testing requires the code to be in an executable

state to perform the tests.

• Most verification techniques are static tests where as

validation tests are dynamic tests.

• Feasibility Reviews and Requirements Reviews are examples

of Static testing.

• Unit, Integrated, System and User Acceptance testing are

examples of Dynamic testing.

http://www.spinstitute.org/

The “V” Testing Concept

Operational or
Business
Need

Verify
Operational

or Business Need

Define
Requirements

Verify
Requirements

Design
System

Verify
Design

Build
System

Verify
Construction

Acceptance
Test

Validate
Operational

or Business Need

System
Test

Validate
Requirements

Integration
Test

Validate
Design

Unit
Test

Validate
Construction

Static Dynamic

Validates

Validates

Validates

Validates

© IIST, 1996-2010 www.iist.org 25

http://www.spinstitute.org/

www.spinstitute.org 26

© IISP, 1996-2008

Key Metrics that drive Process Improvement

• Defect Discovery Phase
• Phase of the SDLC in which the defect was found

• Defect Discovery Method
• Testing method that found the defect

• Defect Origination Phase
• Phase of the SDLC in which the defect was originated or “first”

introduced into the product

• Root Cause
• Primary reason why the defect occurred

• Defect Resolution Type
• How the defect was resolved

• Defect Leakage Reason
• Root cause to determine method defect escaped the testing

phase

http://www.spinstitute.org/

Root Cause Examples

• Concept

• Analyze –
(Requirements)

• Design

• Build

• Testing

• Beta

• Deployment

• Production

• Other

– Missing

– Ambiguous/vague

– Wrong

– Changed

– Inconsistent

– Other

Defect Origination Phase Root Cause

© IIST, 1996-2010 www.iist.org 27

http://www.spinstitute.org/

Root Cause Examples

• Concept

• Analyze –
(Requirements)

• Design

• Build

• Testing

• Beta

• Deployment

• Production

• Other

– Missing

– Ambiguous/vague

– Logic Wrong

– Logic Changed

– Logic Inconsistent

– Other

Defect Origination Phase Root Cause

© IIST, 1996-2010 www.iist.org 28

http://www.spinstitute.org/

Root Cause Examples

• Concept

• Requirements

• Design

• Build

• Testing

• Beta

• Deployment

• Production

• Other

− Code Error
− Syntax
− Bad data
− Begin-end
− Declaration
− Duplicate code
− Initialization
− Local/global

mismatch
− Logic Error
− Memory Usage
− Missing
− Other

Defect Origination Phase Root Cause

© IIST, 1996-2010 www.iist.org 29

http://www.spinstitute.org/

Root Cause Examples

• Concept

• Requirements

• Design

• Build

• Testing

• Beta

• Deployment

• Production

• Other

− Test Data
− Test Environment
− Tester Error
− Test Script Error
− Configuration

Mgmt

Defect Origination Phase Root Cause

© IIST, 1996-2010 www.iist.org 30

http://www.spinstitute.org/

Effective Execution (Quality Assurance)

Goal: Effectively execute all of our projects (delivering

high-quality software, on budget and on

schedule)

Questions: Are defects detected early in the SDLC?

Where are we discovering defects?

How are we discovering our defects?

Are defects escaping to later test phases?

Metrics:

– Defect detection by discovery phase

– Defect detection by discovery method

© IIST, 1996-2010 www.iist.org 31

QA Metrics – Defects by Discovery Phase

Analyze
10
1%

Design
50
4%

Build
100
8%

Test
1000
82%

Production
60
5%

0

200

400

600

800

1000

1200

© IIST, 1996-2010 www.iist.org 32

http://www.spinstitute.org/

QA Metrics – Defects by Discovery Phase

Key Observations/Recommendations

• 82% of defects are found in Testing

• Too much pressure on the test team to find defects

• More defects must be found upstream

• Recommend more unit testing and/or tracking unit test defects.

© IIST, 1996-2010 www.iist.org 33

http://www.spinstitute.org/

QA Metrics – Defects by Test Phase

Component
300
15%

Integration
1000
50%

System (E2E)
500
25%

User Acceptance
200
10%

0
200
400
600
800

1000
1200

© IIST, 1996-2010 www.iist.org 34

http://www.spinstitute.org/

QA Metrics – Defects by Test Phase

Key Observations/Recommendations

• 50% of defects are found in Integration Testing

• Is this acceptable?

• Should more defects be found in Component Test?

© IIST, 1996-2010 www.iist.org 35

http://www.spinstitute.org/

QA Metrics – Defects by Discovery Method

Manual Test
470
49%

Automated Test
110
11%

Unit Test
40
4%

Developer Test (During
formal QA)

200

21%

None
140
15%

© IIST, 1996-2010 www.iist.org 36

http://www.spinstitute.org/

QA Metrics – Defects by Discovery Method

Key Observations/Recommendations

• Very low % of automated versus manual tests

• How much are you investing in automated tests?

• Are you getting your expected ROI on automation?

• How are developers finding such a high % of defects in formal

testing?

• Understand how/what type of testing the developers are doing

to find these defects

• Incorporate these findings into the formal testing process

• 15% (140 Defects) were found but no method was recorded

• This is valuable data that we are missing

• Remove the option to select None from your test management

tool

© IIST, 1996-2010 www.iist.org 37

http://www.spinstitute.org/

Effective Execution (Development)

Goal: Effectively execute all of our projects (delivering high-quality

software, on budget and on schedule)

Questions: How effective is our inspection process?

Where are injecting defects into our products?

How are we resolving defects in our products?

How much time are we spending resolving defects?

What are the primary root causes for our defects?

Metrics:

– Defect detection from Fagan tools

– Defect detection by injection phase

– Defect resolution type

– Total resolution time/Total Verify time

– Defect root cause

© IIST, 1996-2010 www.iist.org 38

Development Metrics – Defects by Origination

Phase

Analyze
90
9% Design

70
7%

Build
410
42%

Test
180
19%

Production
30
3%

None
190
20%

0

100

200

300

400

500

© IIST, 1996-2010 www.iist.org 39

http://www.spinstitute.org/

Development Metrics – Defects by Origination

Phase

Key Observations/Recommendations

• Note the high % of defects found in Test. Is this accurate?

• 42% of defects originated in Build

• This is a large number of coding defects

• Are developers unit testing?

• Recommend that coding standards, tracking unit test defects

and peer reviews

• 9% of defects originated in Analyze? Is this accurate?

• 20% of defects are not accounted for

© IIST, 1996-2010 www.iist.org 40

http://www.spinstitute.org/

Development Metrics – Defects by Resolution

Obsolete

2%

Resolved in Another

Project

1%

Posted to Wrong

Project

1%
Change Not

Justifiable

5%

Not Reproducible

7%

Duplicate

8%

Change

Implemented

63%

As Designed

13%

© IIST, 1996-2010 www.iist.org 41

http://www.spinstitute.org/

Development Metrics – Defects by Resolution

Key Observations/Recommendations

• 13% defects were closed As Designed

• Is there a disconnect between the specifications and the

application? Why are so many defects invalid?

• 8% defects were closed as Duplicate

• Are testers not communicated with each other or searching for

outstanding defects prior to entering their own?

• 7% defects were closed as Not Reproducible

• Why are so many defects non reproducible? Are there

environment or data variables?

• Is the tester doing something abnormal during the execution of

the test?

• Is the developer trying to reproduce it in a different

environment?

© IIST, 1996-2010 www.iist.org 42

http://www.spinstitute.org/

Understanding the Cost of Poor Quality

(CoPQ)

Cost of Poor Quality: The cost of rework associated with fixing any

defects in the product. This includes support

and maintenance costs associated with a

product.

Cost of Quality: The regularly schedule cost for testing a

product. This includes unit testing as well as

the cost for each test phase.

REWORK!!

© IIST, 1996-2010 www.iist.org 43

Rework by Resolution

Rework by Resolution

0

2000

4000

6000

8000

10000

12000

C
han

ge
 Im

pl
em

en
te

d

A
s
D
es

ig
ne

d

N
ot R

epr
od

uc
ib
le

O
bs

ol
et

e

D
upl

ic
at

e

R
eso

lv
ed

 in
 A

not
her

 P
ro

je
ct

(N
on

e)

C
han

ge
 N

ot
 J
us

tif
ia
bl
e

P
os

te
d to

 W
ro

ng
 P

ro
je
ct

H
o

u
rs

© IIST, 1996-2010 www.iist.org 44

http://www.spinstitute.org/

Rework by Resolution

Key Observations/Recommendations

• Over 10K hours were spent fixing defects

• Is this acceptable?

• Do you want a further breakdown of this? (see next slide)

• 2K hours were spent “investigating” defects that were invalid due to

the application working as designed

• Is this acceptable?

© IIST, 1996-2010 www.iist.org 45

http://www.spinstitute.org/

Rework by Resolution

By Severity

0

100

200

300

400

500

600

Critical High Medium Low

Dev Hours

Test Hours

Total Hours

Severity Dev Hours Test Hours Total Hours

Critical 200 300 500

High 50 75 125

Medium 25 50 75

Low 100 200 300

© IIST, 1996-2010 www.iist.org 46

http://www.spinstitute.org/

Rework by Resolution

By Severity/Cost

Severity Dev Hours Test Hours Total Hours Cost

Critical 200 300 500 42500

High 50 75 125 10625

Medium 25 50 75 6250

Low 100 200 300 25000

84375

Cost: Dev = 100

Test = 75

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Critical High Medium Low

Cost

Cost

© IIST, 1996-2010 www.iist.org 47

http://www.spinstitute.org/

Root Cause Frequency

Fields Used: Origination Phase; Root Cause

Count of Root Causes

0

20

40

60

80

100

120

140

L
o

g
ic

 W
ro

n
g

~
O

th
e

r

L
o

g
ic

 E
rr

o
r

~
O

th
e

r

E
rr

o
r

H
a

n
d

li
n

g

A
P

I

D
a

ta

V
a

li
d

a
ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

W
ro

n
g

N
A

7. Test 7. Test 4. Imp. 4. Imp. 4. Imp. 4. Imp. 4. Imp. 4. Imp. 4. Imp. NA

N
u

m
b

e
r

o
f

C
R

s

© IIST, 1996-2010 www.iist.org 48

http://www.spinstitute.org/

Root Cause Frequency

Key Observations/Recommendations

• Almost 200 defects (CRs) are caused due to Logic errors

• This project is having serious issues with their design logic

• Are requirements clear?

• Are these inexperienced developers?

• Do they truly understand how the system is built?

• Over 170 defects are due to UNKNOWN reasons

• Unacceptable

• We have no idea how to fix these issues because the root cause

is unknown

© IIST, 1996-2010 www.iist.org 49

http://www.spinstitute.org/

www.spinstitute.org 50

© IISP, 1996-2008

THANK YOU!!

 CONTACT INFO:

 Mike.w.ennis@accenture.com

QUESTIONS???

http://www.spinstitute.org/

