

Testing with Unknown
Requirements

A Creative Adventure!

Presenter: Indira Pai , SET, Instructure

Warming up...

Requirements
Requirements:

● Also known as
● PRD: Product Requirements Document
● SRS : Software Requirements Specification

● A comprehensive document that fully describes what the
software will do and how it will be expected to perform.

Expected
● Expected Result:

○ Expected result is the functionality/result that is
expected for the correct functioning of the application.

○ It is usually mentioned in the requirement specification
documents.

Actual
● Actual Result:

○ Actual result is what we see in the application while testing.

Defect
● Defect:

○ The deviation between the expected and actual result, if
any, is known as defect.

Without Requirements
● Without Requirements…

○ We don't really know what to test
○ We lose the comfort of having a point of

reference, a result to compare against.

Why unknown requirements?

Lack of Documentation

● No documentation was not done at all
● Lots of documentation but none in sync with

each other.
● General trend towards agile and scrum in the

industry can often remove traditional checkpoints
and artifacts for requirements

Lack of insight
● Complex computations which yield a result obtained

by a complex formula/algorithm usage.
○ There are endless possibilities on what the input can be,
○ But no point of reference/ comparison for expected output,
○ Since it’s not possible to gauge that for all numbers/different

ranges.

The Challenges of the UNKNOWN...

So what do we do?

Gather Information

● Help Documents/ guides/ FAQs/Test
cases/SRS of similar projects.

● Read up on news articles, white papers, blogs
on the software.

Talk, Reach out
● Peers, Stakeholders, internal end users
● Requirements point of contact
● Projects with similar architecture to gain

technical insight
● Projects with similar work methodologies to

gain insight on how did they handle such
situations.

Err… Why should we be excited/inspired/ :-))?
There are things known and there are
things unknown, and in between are the
doors of perception…

Aldous Huxley

Some other approaches

Comparative Study
○ Compare the product with similar

products and take a test run based
on this comparison study

○ Example: Online stores (Amazon/
Ebay)

Exploratory Testing
○ Start exploring the software and

check for ambiguous behaviour.
○ Example: Browser Crashes on

clicking Logout link.

Walkthrough Code
● Dig through the automation tests to figure out

expected for scenarios which have been
automated.

● Dig through the Pseudo Code , and the code
of the software under test and understand
white-box analyse.

UX Testing
○ Explore the software as an end user
○ List out pain points/annoyance

which could possibly make it difficult
to use

○ Example: The “Logout” link is
hidden in the current color scheme,
not clearly visible.

I18N testing
● Internationalization is an often requested

feature/support.
● Change browser default language and verify if

software adapts to the change in language.
● Try this with different languages

A11y Testing

● Accessibility Testing deals with testing how
accessible the software is to an end user with
disabilities.

● Keyboard only navigation, Voice Over, Different
Screen Readers are used to test this.

● We have a meetup in Dec where our accessibility
expert QA will talk about this in more detail:
https://goo.gl/icW1TI

https://goo.gl/icW1TI
https://goo.gl/icW1TI

Feedback
● Propose/intuit what YOU think the requirements

should be if you were the PM or dev based on your
analysis.

When the unknown is much more complex
● Examples:

○ Billing systems for 30 + million customers which have many
offers, plans, freebies for rating and billing day and month wise

○ Mortgaging /Accounting portfolio systems with portfolio index
○ Health indexing systems with calculations based on different

reports for million patients
○ Score calculations in various competitions/ sports tournaments

Introducing: Test Oracle

● A mechanism used for determining whether a test has
passed or failed, where:

○ The system has a lot of complex computational logic
○ The expected results are not known.

Test Oracle : how it works

● Building/developing/coding
○ A computation engine exactly as the system under test

○ Comparing
○ The output(s) of the system under test, for a given test

case input,
○ To the outputs that the oracle determines that product

should have.
○ If there is a deviation found, the problem is either in the

SUT (Dev’s code) or the Test Oracle (mechanism built to
test this complex computation)

○ If there is no deviation found, revisit logic to make sure
both pieces of code dont have the same bug.

When Test Oracle?
● This is an ideal solution where system under

test has the following:
○ Enormous amounts of input data processing for

various ranges
○ Complex computations with input data with lot of

conditions
○ Expected of the test is unknown
○ Computation algorithms of system under test is not

subject to very frequent requirement changes
○ Input needs to be generated from the test oracle

Examples for Test Oracle usage

● Case Study: https://goo.gl/xP8wc9
● Some notes :

○ Application under test involves a computation engine.
○ The result of the engine is computed from a formula/algorithm

post the input is provided.
○ A huge set of input data is involved, with multiple conditions:

■ First 50 inputs : Follow formula 1
■ From 51 to 500 : Follow Formula 2
■ From 500 to 5000 : Follow Formula 3 (and so on..)

○ Lots of permutations/combinations possible
○ No expected value to compare results for every condition.

https://goo.gl/xP8wc9

Test Oracle: Testing Mechanism

Test Oracle: Pros
● Finding the following early in dev code:

○ Optimization issues
○ Functional issues

● Testing attained 100% coverage
○ Each and every calculation parameter for each and every

condition was compared and tested thoroughly.
● Thorough understanding of the module and the

business logic was achieved
○ Helped in debugging issues.

● Quicker turnaround of fixes and better code quality

Test Oracle: Cons
● Additional Time and Resource overhead for building

test oracle framework
● Every change in Business Logic required test oracle

as well as dev code to be changed.
○ Overhead of changing the code
○ Regression of test oracle as well as dev code needed

It’s time to give back! (Process Feedback)
● On the basis of test runs taken for different

approaches discussed, submit feedback to your
team, on what can be done to make the software
much more awesome!!

Add to Automation
● Automate conditions which can be made out

obviously :
○ Logout link color hex code should not be exactly same

as the background.
○ Click on any visible element should not cause

exceptions.
○ Use this analysis to build out on more automation

Conclusion
Getting Requirements documented is very important for
team operation, as it helps everyone be on the same
page.

However, depending on the given set of conditions, we
have the power to evolve our ideas, and transform our
challenges into a goldmine of opportunities!!

Thank You!
Happy Testing!!

Email me @ :
ipai@instructure.com

mailto:ipai@instructure.com
mailto:ipai@instructure.com

